CARMAN

A Consensus based Approach to Risk MANAGEMENT

Integrating training, procedures and risk assessment
Why don’t people comply with procedures?
Types of non-compliance

Data from the power generation industry indicates that 46% of incidents involve the failure of personnel to follow instructions.

• Unintentional non-compliance (human error—e.g. procedures factually incorrect, operator distracted, so misses a step, procedures ambiguous)

• Intentional non-compliance (‘violations’, ‘circumventions’, ‘bad habits’)

A question of culture

• In general, there is a tendency for organisations to blame the individual rather than look for the systems causes of non-compliances

• Even when the individual deliberately disobeys the procedures, there may be good reasons…..
Definition of Violation/Circumvention

A person deliberately chooses a course of action which is different from the official procedure....

...even though the correct official procedure is known
Absence of credible and agreed working practices: A central cause of Violations

- A true violation can only exist if a credible and agreed standard method of work exists
- Usually major disparities between informal and formal procedures
- Why does ‘Working to Rule’ mean that everything stops?
Some Reasons for Procedures Violations

- Seen as largely to protect the management rather than support the worker.
- Detailed step by step procedures seen as inappropriate and unnecessary for experienced workforce.
- Desire for autonomy and control.
- Procedures seen as impractical.
- Over-complex.
- Reasons for compliance not known.
What is CARMAN?

• A process which develops best practices to control risks based upon both formal and informal knowledge and expertise

• Captures expertise

• Involves active participation of people at the ‘sharp end’ in analysing working practices and identifying risks

• Develops job aids which complement expertise rather than trying to replace it
Phase 1: Develop Best Practice

Tools
- Criticality Screening
- Task Analysis
- Error analysis
- Formatting guidelines

Stages
- Generate Task Inventory
- Document Current Practice
- Agree Best Practice
- Document Best Practice

Inputs
- Operator Input (inc Technical Input)
- Consensus Group (inc Technical Input)

Reference Best Practice

Phase 1: Develop Best Practice

Reasons why
How the Consensus Process Works

Task Experts
People who do the job

Facilitator
(System user peer group)

Training specification

Best Practice
Agreed by all

Job aids

Consensus meeting

Facilitators talk to all system users who describe current practice

Differences

Technical questions

Proposed best practice

I see a problem

Technical experts

We do it this way!

Practical realities

Risks controlled

Best Practice

Agreed by all
How the Reference Best Practice is used

- Training content
- Hazards & Risks
- Step by step procedures
- Job aids (Brown book replacement)
Reference Best Practice documentation format

<table>
<thead>
<tr>
<th>Task analysis information</th>
<th>Potential hazards / consequences</th>
<th>Training issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition of task</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.1.1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start up P3004B after maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do 1 to 3 in order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When UZA 430 is healthy, Do 4 When P3004B is running, Do 5 If P3004B is Noisy AND OR Vibrates AND OR Leaks, Do 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Pre start up checks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do 1.1 to 1.3 in any order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Ensure vents and drains are closed and blanked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Ensure pump de-spaded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Ensure pump is energised</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Who</th>
<th>Hazard</th>
<th>Add. Info.</th>
<th>Generic skills</th>
<th>Specific knowledge</th>
<th>Level of support</th>
</tr>
</thead>
<tbody>
<tr>
<td>FO</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Task analysis section

<table>
<thead>
<tr>
<th>Task analysis information</th>
<th>Potential hazards / consequences</th>
<th>Training issues</th>
</tr>
</thead>
</table>

Unit No.

Definition of task

U30

3.5.1.1.3

Start up P3004B after maintenance

PLAN:

Do 1 to 3 in order

When UZA 430 is healthy, Do 4 When P3004B is running, Do 5 If P3004B is Noisy AND OR Vibrates AND OR Leaks, Do 6

Task

1. Pre start up checks

Do 1.1 to 1.3 in any order

- 1.1 Ensure vents and drains are closed and blanked
- 1.2 Ensure pump de-spaded
- 1.3 Ensure pump is energised

- **Rev A**

- **Who**

- **FO**

- **FO**

- **FO**
Risk and Hazard Information

<table>
<thead>
<tr>
<th>Task analysis information</th>
<th>Potential hazards / consequences</th>
<th>Training issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard</td>
<td>Description</td>
<td>Additional Information</td>
</tr>
<tr>
<td>Severity Level</td>
<td>Description</td>
<td>Potential consequences</td>
</tr>
<tr>
<td>High, medium or low</td>
<td>e.g. failure to open suction valves will stop pump start up</td>
<td>Quality, personal injury, plant damage, etc.</td>
</tr>
<tr>
<td></td>
<td>Any further explanation (location of equipment, etc.)</td>
<td></td>
</tr>
<tr>
<td>Training & Support Issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task analysis information</td>
<td>Potential hazards / consequences</td>
<td>Training issues (Task and subtask competencies)</td>
</tr>
<tr>
<td>Generic skills required</td>
<td>Specific knowledge required</td>
<td>Level of support required</td>
</tr>
<tr>
<td>Source of skills: Training courses (including refresher training) Degree of experience with the task</td>
<td>–Location of plant items such as pumps –Valve line-ups –Reference data-temperature, pressures</td>
<td>–No written instruction –Job aid –Full procedure</td>
</tr>
</tbody>
</table>
Benefits of Basing both Procedures and Training on the Reference Best Practice document

• Provide a common basis for the development of procedures, job aids and training

• Documents the how and the why of task steps (risk and hazard information)

• Provides information to decide on level of support required (Risks, complexity, frequency of exposure)
Benefits of Basing both Procedures and Training on the Reference Best Practice document

- Reduces resource requirements: same data can be used as basis for procedures, training content and competence assessment
- Prioritisation of training & procedures effort based on level of task risk
- Procedures and job aids can be integrated in training
Define training needs, competency standards & assessment methods

Determine level of online support

Prepare Job Aids

Specify training needs, competency standards & assessment methods

Prepare training programme

Reference Best practice

Job Aids

Implement

Decision Table
Decision Aid to Determine Level of On-line Support

<table>
<thead>
<tr>
<th>Task Criticality</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Familiarity</td>
<td>Task Complexity</td>
<td>Frequency</td>
<td>Infreq</td>
</tr>
<tr>
<td>Low</td>
<td>NWI</td>
<td>NWI</td>
<td>JA</td>
</tr>
<tr>
<td>Medium</td>
<td>NWI</td>
<td>JA</td>
<td>SBS</td>
</tr>
<tr>
<td>High</td>
<td>JA</td>
<td>JA</td>
<td>SBS</td>
</tr>
</tbody>
</table>

- **No Written Instruction required (NWI)**
- **Job Aid required e.g. checklist/memory aid (JA)**
- **Step by Step instruction required (SBS)**
Examples of job aids

• Checklists indicating sequence of actions
• Graphical representations of geographical information
• Critical reference values
• Reminders and memory aids
Furnace Trip Job Aid

How long is furnace likely to be down?

Temporary unit shut down

More than 1 hour

Attempt to re-light furnace

Commence furnace start-up procedure

Reset 98-DEA-80

Light pilot flame

Did pilot flame light?

Yes

Return Unit to normal

No

Is hot oil temperature above 150°C?

Yes

No

Reduce feed

Column temperature and reflux to manual

Stop hot oil to columns 5 and 7

Bypass column 6 steam raisers

Stop tank 7 and 8 import

Rundown to off grade

Maintain column levels

Reduce column reflux rates

Stop overhead pumps as condenser levels fall
Training and Competency Aspects of CARMAN

• Training programmes must be based on Best Practices developed by the CARMAN Consensus process

• Generic competencies must be supplemented by job specific skills based on documented best practices
 – Implications for multi-skilling
 – Implications for moving employees between jobs
Training and Competency Aspects of CARMAN

- Job specific training is required to ensure that best practices are preferred practices
- Explicit training is essential
- "Sitting with Nellie" perpetuates inadequate practices
- Trainer must ensure that personnel understand why Best Practices are preferable
Phase 3: Maintaining Best Practice

Reference Procedure

Job Aids

Training programme

Implement

Feedback from operational experience

Update
Maintaining best practice through culture change

- CARMAN develops an open culture - people are more willing to discuss problems
- Consensus groups develop collective responsibility for Best Practice - no blame attached to individuals
- Best Practice is therefore frequently updated on the basis of feedback via Consensus groups
Maintaining Best Practice

- Encourage and use feedback from users
- Maintain channels of communication with the sharp end via facilitator
- Reapply CARMAN to generate new practices and supporting job aids & refresher training:
 - plant/equipment changes
 - changes in working practices
 - operational experience
 - regulatory change
Summary of Recommended Strategy

- Start with the most critical tasks (from Task Inventory & Criticality analysis)
- Develop Reference Procedures for the Critical Tasks (depending on resources)
- Develop Job aids, training and competency specifications to control risks
- Proceed to other tasks as resources become available
- Builds a participative safety culture by directly involving personnel in developing best practice
- Develops job aids which complement competency
- Develops standardised and auditable working practices
- Integrates procedures with training and competency
- Facilitates learning lessons by breaking down barriers to communication
- Raises awareness of risks

Summary of CARMAN benefits
Case Study
Large Oil and Chemical Site

• Series of dangerous near misses (flare line nearly ruptured)
• Highlighted compliance to procedures as problem area
CARMAN Implementation

- Benchmark survey across whole site
- Two pilot studies
- 7 production implemented CARMAN
 - Facilitator trained on each unit
 - All personnel received awareness training
- Some engineering departments included
- Site Standing Instructions included
Facilitator collects information and develops provisional best practice. Shifts review methods for performing tasks and reviewed by each shift & modified if necessary. Developing Best Practice by Consensus.
Results of applying CARMAN over a 3 year period

<table>
<thead>
<tr>
<th>Opinions: Procedures are…</th>
<th>Improvement over 3 year period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inaccurate</td>
<td>+4%</td>
</tr>
<tr>
<td>Unworkable</td>
<td>+52%</td>
</tr>
<tr>
<td>Not best practice</td>
<td>+19%</td>
</tr>
<tr>
<td>Out of date</td>
<td>+4%</td>
</tr>
<tr>
<td>Too complex</td>
<td>+21%</td>
</tr>
<tr>
<td>Information inaccessible</td>
<td>+3%</td>
</tr>
<tr>
<td>Identification difficult</td>
<td>+17%</td>
</tr>
<tr>
<td>Location difficult</td>
<td>+8%</td>
</tr>
<tr>
<td>Not aware they exist</td>
<td>+18%</td>
</tr>
<tr>
<td>Don't understand why they are necessary</td>
<td>+52%</td>
</tr>
</tbody>
</table>

Statistically significant changes
Other Benefits

- Plant start-up time substantially reduced
- Reduced effluent emissions
- Improved safety record
- ~500,000 pounds saving in first year
Conclusions

• Culture has changed so that generally tasks are performed as documented
• Company is able to maintain a competent workforce covering existing and new personnel
• Safety issues raised go far beyond procedures, training and competence