Human error and recovery
in the chemical process industry

- the positive contribution of human operators
during incidents

Tjerk van der Schaaf & Lisette Kanse
Eindhoven University of Technology
Human Performance Management Group

/faculteit technologie management
Overview

• Why recovery?
• Modelling recovery behaviour
 – failures, consequences and recovery
 – actions involved in recovery
• Recovery, near misses and reporting systems
 – learning about recovery from near misses
 – reporting biases
 – analysing recovery root causes
Why recovery?

- Not all failures can be foreseen
- Even foreseen failures cannot always be prevented
 - measures impossible
 - measures not cost-effective
Failures, consequences and recovery

Incident causation model

failures deviation planned recovery unplanned (ad-hoc) recovery
Actions involved in recovery

- ** BEGIN **
 - problem situation arises as a result of one or more failures

- ** D **
 - detection of problem situation

- ** E **
 - explanation of problem and causes

- ** C **
 - counter-measures against problem at stake

- ** END **
 - of recovery process

Recovery process phase model
Taking a closer look

• detection
• explanation:
 – definition of problem
 – identification of causes
• countermeasures:
 – stabilization
 – mitigation
 – temporary correction
 – permanent correction
Recovery process in incident causation model

- **Failure Process**
 - technical failure(s) (faults)
 - organisational failure(s)
 - human failure(s) (errors)

- **Immediate Result of Failure Process**
 - dangerous / unwanted / problem situation

- **Failure Compensation Process**
 - detection
 - planned, for unforeseen problems
 - unplanned, ad-hoc
 - explanation / localisation
 - planned, for unforeseen problems
 - unplanned, ad-hoc
 - correction
 - planned, for unforeseen problems
 - unplanned, ad-hoc

- **Failure Compensation Process Outcomes**
 - end result compensation successful?
 - yes
 - near miss
 - any unwanted adverse effects?
 - yes
 - End
 - no
 - compensation not or only partially effective
 - incident / accident with remaining negative consequences
 - yes
Examples of recovery scenarios

• Simple:
 e.g. case where field operator forgets product sample (detection – permanent correction)

• More complex:
 e.g. case with defect in signal transmitter for flow indicator (detection – stabilization – definition of problem – investigation of causes – temporary correction – permanent correction)
Learning about recovery from near misses

• near miss reports lack recovery information
• near miss = failure + recovery
• failure root cause database → preventive measures
• recovery root cause database → recovery promotion
Recovery promotion

- detection: observability
- explanation: traceability
- countermeasures: reversibility
Reporting biases

• Possible reasons?
Reporting biases

Distribution of 32 reasons given by 21 operators for not reporting 25 “diary incidents” to the existing near miss reporting system.
Overcoming reporting biases

• management has to convince operators of the value of successful recoveries of all types of errors
• human operators as the strong link in the chain!
• top-down and bottom-up approach to near miss reporting system design
Analysing recovery root causes (1)
Analysing root causes (2)

<table>
<thead>
<tr>
<th>Category</th>
<th>Planned recovery</th>
<th>Unplanned recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>p-H</td>
<td>up-H</td>
</tr>
<tr>
<td>Technical</td>
<td>p-T</td>
<td>up-T</td>
</tr>
<tr>
<td>Organisational</td>
<td>p-O</td>
<td>up-O</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>up-X</td>
</tr>
</tbody>
</table>
Further reading

Conclusions

• Reporting and analysing recovery is valuable
• Recovery promotion can be supported by proper system design
• Lessons for other high-risk domains